Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction.
نویسندگان
چکیده
PURPOSE In gated cardiac single photon emission computed tomography (SPECT), image reconstruction is often hampered by various degrading factors including depth-dependent spatial blurring, attenuation, scatter, motion blurring, and low data counts. Consequently, there has been significant development in image reconstruction methods for improving the quality of reconstructed images. The goal of this work is to investigate how these degrading factors will impact the reconstructed myocardium when different reconstruction methods are used. METHODS The authors conduct a comparative study of the effects of these degrading factors on the accuracy of myocardium by several reconstruction algorithms, including (1) a clinical spatiotemporal processing method, (2) maximum likelihood (ML) estimation, (3) 3D maximum a posteriori (MAP) estimation, (4) 3D MAP with posttemporal filtering, and (5) motion-compensated spatiotemporal (4D) reconstruction. To quantify the reconstruction results, the authors use the following measures on different aspects of the myocardium: (1) overall error level in the myocardium, (2) regional accuracy of the left ventricle (LV) wall, (3) uniformity of the LV, (4) accuracy of regional time activity curves by normalized cross-correlation coefficient, and (5) perfusion defect detectability. The authors also assess the effectiveness of degrading corrections in reconstruction by considering an upper bound for each reconstruction method, which represents what would be achieved by each method if the acquired data were free from attenuation and scatter degradations. In the experiments the authors use Monte Carlo simulated cardiac gated SPECT imaging based on the 4D NURBS-based cardiac-torso (NCAT) phantom with different patient geometry and lesion settings, in which the simulated ground truth is known for the purpose of quantitative evaluation. RESULTS The results demonstrate that use of temporal processing in reconstruction (Methods 1, 4, and 5 above) can greatly improve the reconstructed myocardium in terms of both error level and perfusion defect detection. In low-count gated studies, it can have even greater impact than other degrading factors. Both attenuation and scatter corrections can lead to reduced error levels in the myocardium in all methods; in particular, with 4D the bias can be reduced by as much as four-fold compared to no correction. There is a slight increase in noise level observed with scatter correction. A significant improvement in heart wall appearance is demonstrated in reconstruction results from three sets of clinical acquisitions as correction for degradations is combined with refinement of temporal filtering. CONCLUSIONS Correction for degrading factors such as resolution, attenuation, scatter, and motion blur can all lead to improved image quality in cardiac gated SPECT reconstruction. However, their effectiveness could also vary with the reconstruction algorithms used. Both attenuation and scatter corrections can effectively reduce the bias level of the reconstructed LV wall, though scatter correction is also observed to increase the variance level. Use of temporal processing in reconstruction can have greater impact on the accuracy of the myocardium than correction of other degrading factors. Overall, use of degrading corrections in 4D reconstruction is shown to be most effective for improving both reconstruction accuracy of the myocardium and detectability of perfusion defects in gated images.
منابع مشابه
Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT.
UNLABELLED We determined the relative effect of corrections for scatter, depth-dependent collimator response, attenuation, and finite spatial resolution on various image characteristics in cardiac SPECT. METHODS Monte Carlo simulations and real acquisition of a 99mTc cardiac phantom were performed under comparable conditions. Simulated and acquired data were reconstructed using several correc...
متن کاملA New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملEvaluation of the potential impact of reconstruction method on dyssynchrony parameters derived by phase analysis of gated-SPECT MPI: Comparison of two quantitative software
Introduction: Gated SPECT myocardial perfusion scanning has new capabilities in addition to its main applications such as left ventricular dyssynchrony using phase analysis. Phase analysis has been investigated through various software including Emory Cardiac Toolbox (ECTb) and Quantitative Gated SPECT (QGS). The aim of this study is to evaluate the effect of reconstruction par...
متن کاملBreath-hold CT attenuation correction for quantitative cardiac SPECT
BACKGROUND Attenuation correction of a single photon emission computed tomography (SPECT) image is possible using computed tomography (CT)-based attenuation maps with hybrid SPECT/CT. CT attenuation maps acquired during breath holding can be misaligned with SPECT, generating artifacts in the reconstructed images. The purpose of this study was to investigate the effects of respiratory phase duri...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 38 12 شماره
صفحات -
تاریخ انتشار 2011